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Abstract—For g-ary n-sequences, we develop the concept of
similarity functions that can be used (for ¢ = 4) to model a ther-
modynamic similarity on DNA sequences. A similarity function is
identified by the length of a longest common subsequence between
two g-ary n-sequences. Codes based on similarity functions are
called DNA codes [10]. DNA codes are important components in
biomolecular computing and other biotechnical applications that
employ DNA hybridization assays. We present our unpublished
results [8] connected with the conventional deletion similarity
function [1] used in the theory of error-correcting codes. The
main aim of this paper — to obtain lower bounds on the rate of
optimal DNA codes for a biologically motivated [11], [12], [13]
similarity function called a similarity of blocks. We also present
constructions of suboptimal DNA codes based on the parity-check
code detecting one error in the Hamming metric [3].

I. INTRODUCTION AND BIOLOGICAL MOTIVATION

Single strands of DNA are, abstractly, (A,C,G,T)-
quaternary sequences, with the four letters denoting the re-
spective nucleic acids. Strands of DNA sequence are oriented;
for instance, X = AACG is distinct from ¥ = GCAA.
Furthermore, DNA is ordinarily double stranded: each se-
quence X, or strand, occurs with its reverse complement
X', with reversal denoting that the sequences of the two
strands are oppositely oriented, relative to one other, and
with complementarity denoting that the allowed pairings of
letters, opposing one another on the two strands, are (A, T')
or (C, G)—the canonical Watson-Crick pairings. For instance,
two sequences X = AACG and X' = CGTT are reverse
complement of one another. Obviously, for any strand X, we
have (X/) = X.

Whenever two, not necesseraly complementary, oppositely
directed DNA strands “mirror” one another, they are capable
of coalescing into a DNA duplex. The process of forming
DNA duplexes from single strands is referred to as DNA
hybridization. The greatest energy of DNA hybridization (the
greatest stability of DNA duplex) is obtained when the two se-
quences are reverse complement of one another and the DNA
duplex formed is a Watson-Crick (WC) duplex. However, there
are many instances when the formation of non-WC duplexes
are energetically favorable. The energy of DNA hybridization
(the stability of DNA duplex) £(X,Y") of two single DNA
strands X and Y is, to a first approximation, measured by
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the longest length of a common subsequence (not necessary
contiguous) of either strand and the reverse complement of the
other [10]. For two reverse complementary strands X and X’
of length n, this measure plainly equals their length n, i.e.,
the maximum number of Watson-Crick bonds (complementary
letter pairs) which may be formed between two oppositely
oriented strands:

E(X, X" = max E(X,Y) =

(1.1)

CGTT, then

= max EYV',X) = EX',X) = n.
For instance, if X = AACG and X' =
E(X,X") = 4.

A DNA code X is a collection of single stranded DNA
sequences of fixed length n where each strand occurs with
its reverse complement and no strand in the code equals its
reverse complement [8], [10], i.e., if X € X, then X' € X
and X’ # X. In DNA hybridization assays, the general
rule is that formation of WC duplexes is good, but and the
formation of non-WC duplexes is bad. A primary goal of
DNA code design is to be assured that a fixed temperature can
be found that is well above the melting point of all non-WC
duplexes and well below the melting point of all WC duplexes
that can form from strands in the code. Thus the formation
of any WC duplex must be significantly more energetically
favorable than all possible non-WC duplexes. DNA codes are
important components for biomolecular computing [5] and
other biotechnical applications that employ DNA hybridization
assays. Note [10] that for these applications, the code length
n, 10 < n < 40, is experimentally accessible and that codes
with more than 10° codewords could soon be called for.

The mathematical analysis of DNA hybridization is based
on the concept of similarity functions that can be used to
model a thermodynamic similarity on single stranded DNA
sequences. For two quaternary n-sequences X and Y, the
longest length of a sequence occurring as a (not necessary
contiguous) subsequence of both is called a deletion similarity
S*(X,Y) between X and Y. We supposed [8], [10] that the
deletion similarity S*(X,Y") identifies the number of base pair
bonds in a hybridization assay between X and the reverse
complement of Y, i.e., the energy of DNA hybridization
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E(X,Y") satisfying (1.1) is defined as follows
E(X,Y) = £&X)Y) = SMX,Y) = SNV, X). (1.2

Let D,1 < D <n—1, be a fixed integer. A DNA code X is
called a DNA code of distance D based on deletion similarity
or, briefly, an (n, D)-code [8], [10] if the deletion similarity

SMX,Y)<n-D-1, X, YeX, Y#X. (13

Definition (1.2) and condition (1.3) mean that the energy of
DNA hybridization

EX,Y)<n-D-1, X, YeX, Y#X, (14

i.e., in (n, D)-code any strand X and the reverse complement
of the other strand Y can never form > n — D base pair
bonds in a hybridization assay. In the theory of error-correcting
codes, condition (1.3), by itself, specifies codes capable to
correct any combination of D deletions [1], [4].

Example 1.1. DNA code X = {X, X', Y,Y’}, where
X = ACAT, X' = ATGT,
Y = ATAC, Y' =GTAT, (1.5)

is a (n, D)-code of length n = 4 and distance D = 1 because
n—D —1 = 2 and sequence Z = AT of length 2 is the
longest common subsequence between any pair of strands in
DNA code X. Hence,

(X, X) =E(X', X") = SMNX, X') =
EV,Y)=EX",Y) =S YY) =
EX)Y)=&(X"Y)=SMX,Y') =
E(X,Y )=E(X,Y) =SMX,Y) =2.

In papers [11], [12], [13], we introduced the concept of
common block subsequence, namely: a common subsequence
Z of sequences X and Y is called a common block sub-
sequence if any two consecutive elements of Z which are
consecutive in X are also consecutive in Y and vice versa. For
two quaternary n-sequences X and Y, the longest length of a
sequence occurring as a common block subsequence of both
is called a block similarity between X and Y. For example,
sequence Z = AT of length 2 is the longest common block
subsequence between any pair of strands in DNA code (1.5).
Thus, DNA code (1.5) can be considered as DNA (4, 1)-code
based on block similarity.

The first conventional issue of coding theory [3] for DNA
codes — to get a lower random coding bound on the rate
of DNA codes and, hence, to identify values of the distance
fraction D /n for which DNA code size grows exponentially
when n increases. The given problem is more difficult than
the corresponding problem for deletion-correcting codes. For
instance, we cannot apply the best known random coding
bounds [6] on the rate of deletion-correcting codes because
these bounds were proved for codes which are not invariant
under the reverse complement transformation. For the deletion
similarity, the best known random coding bounds on the rate

of DNA codes were established in our papers [8], [10]. The
second conventional issue of coding theory for DNA codes
— to present constructions of DNA codes. The aim of our
paper is to obtain bounds and constructions for DNA codes
based on the deletion and block similarities which have a good
biological motivation to model a thermodynamic similarity on
DNA sequences [11], [12], [13]. We will study g-ary DNA
codes which can be considered as an evident generalization of
quaternary DNA codes.

II. NOTATIONS, DEFINITIONS AND RESULTS

The symbol £ denotes definitional equalities and the symbol
[n] £ {1,2,...,n} denotes the set of integers from 1 to n. Let
q¢=2,4,...be a fixed even integer, A £ {0,1,...,q— 1} be
the standard alphabet of size |A| = g and |u] ([«]) denote the
largest (smallest) integer < u (> w). Consider two arbitrary
g-ary n-sequences

)EAna y = 7yn)EAn'

X = (x1,T2,...,Tn (y1,v2,---

In what follows, we will denote by symbol S = S(x,
arbitrary symmetric function satisfying conditions

y) an

0<S(x,y) =S5(y,x) <S(x,x) =n, xe A", ye A",

and called [10] a similarity function. Introduce the binary
entropy function

hq(u) £ —ulog,u— (1 —u)log, (1 —u), 0<u<lL.
Let £ € [n] and m = 1,2,...,£. By symbol

z=(21,2,...,2) €AY, where 2z, =uz; = Yjms
1<ip<ig<--<ig<n, 1<ji<ja<--<je<m,

we will denote a common subsequence of length |z| = ¢
between x and y.

Definition 1. [1]. Let S*(x,y), 0 < S*(x,y) < n, denote
the length |z| of longest common subsequence z between
sequences x and y. The number S*(x,y) is called a deletion
similarity between x and y.

Definition 2. [11], [12], [13]. A common subsequence

2</l<n,

z=(21,22,...,20),

is called a common block subsequence of length |z| £ ¢
between x and y if any two consecutive elements z,,, 2,41,
m = 1,2,...,¢ — 1, which are consecutive (separated) in x
are also consecutive (separated) in y and vice versa, i.e,

= Yjm+1) -

=Ti,41) © (2m = Yijm s Em41

Definition 3. [11], [12], [13]. Let S?(x,y) denote the
length |z| of longest sequence occurring as a common block
subsequence z between sequences x and y. The number
SB(x,y), 0 < SP(x,y) < n, is called a similarity of blocks
between x and y. Obviously, S%(x,y) < S*(x,y).

Definition 4. [8], [10]. If ¢ = 2,4, ..., then

Jq_]‘})

(Zm = Tipns Zmp1

T2 (¢q—1) -z, z€A={01,...
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is called a complement of a letter x. For an arbitrary ¢-ary
n-sequence X = (z1,Z2,...,Tn—1,Ly) € A", we define its
~ A — — — — n
reverse complement X = (T, Tp-1,...,%2,%1) € A™.
Let x(1),x(2),...,x(N), where

x(k) £ (z1(k), z2(k),...,zn(k)), :(k) € A, k € [N],

be codewords of a q-ary code X = {x(1),x(2),...,x(N)}
of length n and even size N. Let D, 1 < D <n — 1, be an
arbitrary integer.

Definition 5. [8], [10]. A code X is called a DNA
(n, D)-code based on similarity function S = S(x,y) (briefly,
(n, D)-code) if the following two conditions are fulfilled.
(¢) For any number k € [N] there exists k' € [N], ¥’ # k, such
that x(k’) = x(k). (ii) For any k,k’ € [N], where k # k',
the similarity S(x(k),x(k’)) <n — D — 1. We will also say
that code X is a DNA code of length n, distance D and
similarity n — D — 1.

For ¢ = 4, Definition 5 and a biological motivation of
(n, D)-codes based on deletion similarity S = S*(x,y) were
suggested in [10]. If only condition (i%) is retained, then an
(n, D)-code based on deletion similarity is a code of length
n capable to correct any combination of < D deletions [1].
A biological motivation of quaternary DNA codes based on
similarity of blocks S = S”(x,y) was suggested in [11].

For given n and D, we denote by Ny(n, D) the maximal
size of (n,D)-codes. If d, 0 < d < 1, is a fixed number, then

Ry(d) & nILH;O log, ng% ldn])
is called a rate of (n, |dn])-codes.

Let d = d), 0 < d) < (¢ —1)/g, be the unique root of
equation 112 = dlog,(q — 1) + hy(d). A lower bound on the
rate Ry (d) of DNA codes based on the deletion similarity is
presented by

Theorem 1. [8]. If 0 <d < dy, then

Ry(d) > Ry(d) & 14d —2[dlog,(q — 1) + he(d)].

Example 2.1. For the binary case, dj = 0.13340 and for
the most important quaternary case, d; = 0.27029. In addition,
dy = 0.34902 and d} = 0.40324.

Theorem 2.  For any distance fraction d, 0 < d < % the
rate R3(d) of DNA codes based on the similarity of blocks
satisfies inequality

RJ(d) > R}(d) £ (1-d) — E,(d), (2.1)
Ey(d) = Jmax (v, d), (2.2)
Fy(v,d) 2 (1—d)h, <1fd> + 2dh, (2) (2.3)

Theorems 1 and 2 are established with the help of a random
coding bound described in Sect. 3. The proof of Theorem 2
will be given in Sect. 4. The proof of Theorem 1 will be given
in Sect. 5.

Let a number df;, 0 < dg < 1/2, be the unique root of
equation Eg (d) =0or 1—d= E,(d). Obviously, the lower

bound Eg (d)>0if0<d< dg and we will say that d'g is a
critical point of the lower bound Eqﬁ (d).

Example 2.2. We calculated dj = 0.17888, dj =
0.35755, d = 0.44523 and d° = 1/2. It means that the
critical points for block similarity exceed the corresponding
critical points (see, Example 1) for deletion similarity.

One can easily understand that the conventional Hamming
bound on the size of block codes with distance D+1 is a trivial
upper bound on Nf(n,D). For D = 1, an improvement of
this trivial bound is given by

Theorem 3.  The maximal size N/ (n,1) < (¢"~" + q) /2.

Proof. Consider an arbitrary code X = {x(k),k € [N]} of
length n, distance D = 1 and block similarity n — 2. For each
x(k), there exists one or two subsequences of length n — 1
obtained by deletions of the first or the last element of x(k).
Let X contain N; () codewords which yield one (two)
subsequences of length n — 1. Obviously, N1 < g. From item
(i) of Definition 5, it follows that there are Nj + 2N, distinct
(n — 1)-subsequences, i.e., N; + 2Ny < ¢"~!. Therefore,
N=N; +N, < (¢" ' +q) /2

Theorem 3 is proved.

The following theorem is based on a construction of g-ary
DNA codes obtained with the help of g-ary parity-check codes
detecting one error in the Hamming metric [3].

Theorem 4. There exists a q-ary DNA code of length n,
distance D = 1, block similarity n — D — 1 = n — 2 and size

e N=(¢"'4¢q)/2 if n=q=2™;

o« N=¢"1)2 if ¢q=2", n=2"" k>1;

e« N= (g1~ q"/:%) /2 if n is a number divisible
by q and 4;
N = (gnt —gn/z — 21 ; :

. = (q q P /2 if n is a number

divisible by q.

If n = ¢ = 2™, then Theorem 3 means that the construction
of Theorem 4 is optimal. If ¢ is fixed and n — oo, then
Theorem 3 means that the construction of Theorem 4 is
asymptotically optimal.

Example 2.3. If ¢ = 2 and n = 4, then a DNA code
of length n = 4, size N = 4, distance D = 1 and block
(deletion) similarity n — D — 1 = 2 contains 2 pairs of code-
words: 0000 1111 and 0110 1001. Obviously, N5 (4,1) =
N 4,1) = 4.

Example 2.4. For n = q = 4, the construction of optimal
DNA code from Theorem 4 is illustrated by the following
table which contains 43 = 64 codewords satisfying the parity-
check condition: for each codeword, the sum of its elements
is a number divisible by 4. These codewords are written as
% - 4% = 32 pairs of reverse complement codewords. Any row
of the table consists of 1, 2, or 4 pairs. In any row, the first
(second) codewords are obtained as consecutive cyclic shifts
of the first (second) codeword of any fixed pair of the row. If
we eliminate from the table all 15 pairs from the second and
fourth columns of the table, then one can easily check that
the rest 17 pairs will constitute a quaternary DNA code X of
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length n = 4, size N = 217 = 34, block distance D =1
and block similarity n — D — 1 = 2.

0000, 3333

0013,0233 3001,2330 1300,3302 0130,3023
0022,1133 2002,1331 2200,3311 0220,3113
0031,2033 1003,0332 3100,3320 0310,3203
0103,0323 3010,3230 0301,2303 1030,3032
0112,1223 2011,2231 1201,2312 1120,3122
0121,2123 1012,1232 2101,2321 1210,3212
0202,1313 2020,3131

0211,2213 1021,2132 1102,1322 2110,3221
1111,2222

We mark by the symbol underline pairs of codewords (there
are 10 such pairs) from code X which have pairwise deletion
similarities < 2. They constitute a quaternary DNA code of
length n = 4, size N = 2 - 10 = 20, deletion distance D =1
and deletion similarity n — D — 1 = 2. This means that the
maximal size Nj*(4,1) > 20. A general constructive lower
bound on N}*(n, 1) is given by

Theorem 5. If n = qk, where k = 1,3,...
number, then

is an odd

N qnfl
N, 1) > .
RO

Theorem 5 is based on a construction [4] of codes correcting
single deletions or insertions.
III. RANDOM CODING BOUND FOR DNA CODES

For an arbitrary integer s, 0 < s < n, we define two sets

P(n,s) £ {(x,y) : S(x,y) = s}

and

P(n,s) = {x : S(x,%) = s},

ie., the set of all pairs (x,y) for which the similarity

S(x,y) = s and the set of all sequences x for which the simi-

larity between x and its reverse complement X is S(x, X) = s.
For fixed parameter u, 0 < u < 1, define functions

2 g 1oy [P(n, [ —wn])]

n—o00 n

p(u)

and

S & i B P[]

n—o00 n

satisfying inequalities 0 < p(u) <2 and 0 < p(u) < 1. One
can obtain (the proof is omitted here) a random coding bound
on the rate R,(d) which is given by

Lemma 3.1. Letd 0<d <1, be fixed. If

s
omin {1 -p(u)}>0,

then the rate

R,(d) > min {2—p(u)}.

0<u<d

IV. PROOF OF THEOREM 2

Let s, 1 < s < n, be an arbitrary integer and
PP(n,s), P5(n,s) denote the sets from Lemma 3.1 for
the similarity of blocks. For a fixed g-ary s-sequence z =
(21,22,...,25), and j = 1,2,... min{s, n — s + 1}, we
introduce the concept of j-block presentation of z, i.e., a
partition of z into j nonempty blocks

7bj—17bj}7

where each block contains consecutive elements of z. Let
x = (x1,%2,...,2,) € A", be a fixed g-ary n-sequence. We
say that a block presentation z of the form (4.1) is a block
subsequence (BSS) of x if z is a subsequence of x, i.e.,

Z:{bl,bg,... (41)

z = (ziuxizw--;xisful'is);
1< <ig <+ <ig-1 <ig<n,

and all blocks {by,bs,...,bj_1,b;} consisting of consecu-
tive elements of the sequence x are separated in x. Obviously,
if a pair (x,y) € P?(n,s) (a sequence x € P?(n,s)), then
there exists a block presentation z which is a common BSS
between x and y (x and X), i.e., each of sequences x and y
(x and X) contains separated blocks {b1,bs,...,b;_1,b;}
consisting of their consecutive elements. The following upper
bound on the size |P?(n, s)| is true.
Lemma 4.1. For any s, 1 < s < n, the size

|P6(n7 S)| < qs !

min{sgs-ﬁ—l} (S _ 1) |: o (n s+ 1>:| 2
. . . q . 3 .
= J—1 J
The proof of Lemma 4.1 is omitted here. For a fixed g-ary

s-sequence z = (z1,22,...,%s) and its j-block presentation
(4.1), we introduce a reverse complement j-block presentation

ié{ﬁj,f)j_l,...,f)g,f)l}, j=1,...,min{s, n — s+ 1}.

Lemma 4.2. The set P?(n,s) is empty if s > 1 is odd.
If s > 2 is even and an n-sequence x € P?(n,s), then there
exist an integer j, j = 1,2,...,min{s, n—s+ 1} and a self-
reverse complementary s-sequence z. = 7, |z| = s, of the form
(4.1) which is a common block subsequence between x and X
and z has a self-reverse complementary block presentation

7z = {bl,bg,...,b]‘_l,bj} = {B]‘,Bj_l,...,BQ,Bl} = i,

ie., block b1 = Ej’ block bQ = l_)jfl, I block bj,1 = 52,
and block bj = by.
The proof of Lemma 4.2 is omitted. Lemma 4.2 leads to
Lemma 4.3. For any even s, s € [n], the size

PP, 5)] < ¢
(=) [ ( 5]

min{s,n—s+1}

=1
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For s € [n], consider numbers

2
B(n,s) £ max 8,71 . ni‘?—kl
1<j<min{s, n—s+1} 7—1 ]

Let u, 0 < u < 1, be fixed parameter. Introduce

Eq(u) £ lim log, B (n, [(1—wu)n])

n—00 n

, O<u<l.

Lemmas 4.1 and 4.3 yield upper bounds on functions p”(u)
and p”(u) used in Lemma 3.1:

p(u) < (1+u)+ Ey(u),
Pw) < 3114w + Fyfu)].

Therefore, Lemma 3.1 gives a random coding bound on

the rate RY(d) of g-ary DNA (n, [dn|)-codes based on the

similarity of blocks. One can easily check that the given lower

bound Eg(d) can be written in the form (2.1)-(2.3).
Theorem 2 is proved.

V. PROOF OF THEOREM 1

Let s, 0<s <mn,be an arbitrary integer and

PAn,s) £ {(x,y) : SMx,y) = s},
PAns) 2 {x : $*(x,%) = 5},
denote the sets from Lemma 3.1 for the deletion similarity.

Lemma 5.1. [2], [7]. Let n and s be integers, 0 < s < n.
For an arbitrary q-ary s-sequence 'y denote by B,(y,n) the
set of all q-ary n-sequences x that include y as a subsequence,
i.e., that can be obtained from'y by n — s insertions. Then for
the fixed n and s, the size of B,(y,n) does not depend on'y
and has the form

Byym) =3 (3) @ 1" Byn..

k=0

(5.1)

Lemma 5.2 The set P)(n,s) is empty if s is odd. If s
is even and an n-sequence x € P*(n,s), then there exists a
self-reverse complementary s-sequence z = %, |z| = s, which
is a common subsequence between X and X.

Lemma 5.2 is similar to Lemma 4.2. Lemmas 5.1 and 5.2
yield

[P, s)| < ¢ - [By(n,s)]”,
[P n,s)| < ¢*/* - By(n,s), (5.2)

If u, 0 <u<(g—1)/q, is fixed, then from definition (5.1)
it follows

o 108, By, [(1=wn])

n—o00 n

0<s<n.

= wlog,(q — 1) + hy(u).
Therefore, applying (5.2), we have
log, [P*(n, [(1 —wn])| _

A A T
p*(u) = lim -

< 1—wu+2ulog,(q— 1)+ 2hy(u) (5.3)

e log, [P (n, (1
f)A(U) -y m qu ‘ (77’77[( - u)n])| S
1
< 3 [1—u+2ulog,(q— 1) + 2hy(u)], (5.4)

provided that 0 < u < (¢—1)/g. Hence, if 0 < d < (¢—1)/q,
then from (5.3)-(5.4) it follows

min {2 - p*(u)} >

0<u<d
> 1+d—2dlog,(q — 1) — 2h,(d) £ R)(d), (5.5)
1
. _ =X - .pA
onin {1-p(w)} = 5 - By(d). (5.6)

Inequalities (5.5)-(5.6) and Lemma 3.1 yield the statement of
Theorem 1.
Theorem 1 is proved.
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